
Trial-to-trial variability in timing is ubiquitous

Automatic Alignment of Neural Data by Piecewise Linear Time Warping

Time warping models capture timing variability Case Study #2: Rat motor cortex
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Nuisance variation in reaction times

Response-driven variation

Computation-driven variation

Stimulus-driven variation in timing

In simple cued reaching behaviors, non-human primates 
show variable reaction times on the order of several 
hundred milliseconds (Khanna, 2017). Should one align 
each trial to the stimulus presentation (“Go Cue”) or 
movement onset or maximum hand velocity?

PSTH after binning trials by duration.

Another idea is to define multiple alignment events for 
each trial (e.g. nose poke times, stimulus 
presentations, etc.) and then linearly warp each 
segment of every trial to the median time of each 
alignment point (left; Kobak et al., 2016). Are 
human-annotated alignment points optimal, or can a 
statistical model identify better alignments?
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Case Study #1: Mouse olfaction

Summary. We developed an unsupervised, data-driven method, Piecewise 
Linear Warping, to model systematic variability in spike timing. This method 
aligns high-dimensional neural spike trains across trials and discovers 
surprising structure that is rendered invisible by naïve trial-averaging.

In many systems, a stronger stimulus will elicit a faster 
neural or behavioral response. In olfaction, higher 
concentrations of an odorant evoke earlier responses in 
mitral-tufted cells; these temporal effects may provide a 
mechanism for encoding odor identity (Wilson et al., 
2017). How can we detect similar effects in other systems, 
where the stimulus is not as precisely controlled?

In self-paced experiments, animals can end trials early leading to highly variable trial durations. 
An interesting idea is to average neural spike trains over trials of similar duration (right; 
Murakami et al. 2014), but can we develop more principled analyses that capture single-trial 
variations in timing across full populations of neurons?

Finally, it has been proposed that neural dynamics 
are stretched/compressed during production of 
timed motor sequences (Wang et al., 2018). 
Statistical models of systematic temporal variability 
across neural populations may give direct insight 
into computational mechanisms.
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The key idea is to fit a template time series 
that is shifted and/or stretched—i.e., 
warped—on a trial-by-trial basis to match 
the data. Formally, the model minimizes:

Example of linear warping on one neuron (synthetic data):
Easy for nonlinear 
warping to overfit:

Some advantages of our approach:
Simplicity. We developed methods to fit models with 
piecewise-linear warping functions. This allows us to 
gradually increase the complexity of warping.

Few assumptions. Previous work has assumed that neural activations are low-dimensional; we 
make no assumption on the dimensionality of dynamics (and have found it harmful in practice!)

Computationally scalable. Datasets involving hundreds of neurons and trials can typically be fit 
in less than a minute on a modern laptop. We accomplished this by deriving a closed-form 
update rule for the template. The warping functions for each trial are fit by an unbiased random 
search in parallel across CPU threads.
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*In addition to least-squares loss, our code also supports Poisson loss.

Related work:

warping functions

template

Time-warped PCA (Poole et al., Cosyne 2016). Previous work by our group. Parameterizes 
warping functions as a dense grid of knots and uses gradient-based optimization. Assumes 
low-dimensional dynamics. More computationally intensive; can get caught in local minima.

We fit the model to 
spike trains aligned 
to odor presentation. 
The model learns to 
align responses 
tightly with sniff 
onset (a more 
proximal event to 
receptor activation). 
The model arguably 
provides a better 
alignment than 
measured sniff onset 
(see e.g., cell #4). 

A rat taps a lever twice with a target wait time. Aligning each trial to one or both lever 
presses (B-D) obscures striking theta-band oscillations, which are revealed by shift-only 
time warping (E-F) without need for nonlinear warping. These oscillations are visible at 
the level of isolated units, and do not appear to be phase-locked to each other or to LFP.

Zooming in around 
the first lever 
press (blue) 
shows that spike 
oscillations are 
initiated precisely 
after the lever 
press event (not 
by movement 
onset). This effect 
is not seen in all 
neurons.

A Rhesus monkey 
made cued radial 
reaches in a 
standard motor 
assay. Focusing on 
the prepartory period 
(prior to “Go Cue”) 
we find robust 
beta-band 
oscillations in 
multi-unit activity. 
Unlike case study 
#2, oscillations are 
in-phase across 
electrodes and likely 
correlated with LFP.

Time-warped GLMs (Lawlor et al., J Comput Neurosci; 2018). Builds time warping into 
regression/supervised methods. Uses nonlinear warping functions.

Gaussian Process Alignment (Duncker & Sahani, bioRxiv 331751; 2018). Parameterizes warping 
functions as Gaussian processes; nonlinear and not necessarily monotonically increasing. Fully 
probabilistic model tailored to Poisson distributed spike times. Assumes low-dimensional dynamics.

Conclusions. Remarkably simple time warping models can uncover striking 
dynamics that are invisible in raw data, even in brain areas relatively close to 
the sensory-motor periphery and in experimental tasks with well-defined 
alignment points. This method enables data-driven discovery of precise spike 
patterns that are likely overlooked by any trial-averaged analysis.

Similar oscillations were recently found by LFADS, a deep recurrent neural architecture, 
with single trial/unit resolution (Pandarinath et al., 2018). Linear time warping 
recapitulates this result with a simpler statistical model.
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Case Study #3: Primate motor cortex


