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This was presented at the computational neuroscience journal club at Stanford (sponsored by the center
for Mind, Brain, and Computation): https://web.stanford.edu/group/mbc/JournalClub/. These notes
were used as introductory/review material to Kobak et al. (2016) “Demixed principalcomponent analysis of
neural population data.” eLife, http://dx.doi.org/10.7554/eLife.10989
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Basic notation and setup

We have a n X p matrix A.

Let row 7 of A be denoted a;. We will use the convention that we care about each row of the matrix as a
unit of data. In machine learning parlance the rows are “observations” and the columns are “features”
or measurements.

I may refer to each a; as a “datapoint.” This is because you can visualize each row as a point in
p-dimensional Cartesian coordinate space.

For the applications we consider today, each a; will be a neural firing rate trace.

Linear Algebra Review
Basic idea of linear dimensionality reduction:
A~wc”

where W € R™*" and C € RP*". T may refer to C' as the “components,” and W as the “weightings”
or “loadings.”

Two views of matrix-vector multiplication:

— Produces a linear combination of the columns (vector on the right) or rows (vector on the left) of
the matrix. In the context of this discussion, this is relevant because each datapoint is approxi-
mated as a linear combination of the rows of C7:

a; ~ E Wikck
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— Each element in the output vector is a dot product with each row (vector on right) or column
(vector on the left) of the matrix. When the vector is of unit length, this is the projection of each
row/column onto the vector. In this context, this is relevant because you get dimension reduction
by linear projection. If each column of C' is unit length, then multiplying A by C gives you a
lower-dimensional representation of your dataset L:

AC =1L



— Corollary: one can view linear dimension reduction from an information theoretic perspective.
Consider an encoder matrix £ € RP*" that reduces the dimension of each datapoint from p to r,
as well as a decoder matrix D € RP*" that restores the full dimensionality. Our general goal is
to find F and D that minimize the reconstruction error:

minimize loss(A, AEDT)
E,D

s

e Nice properties of symmetric matrices

— Consider a real, symmetric matrix S = ST

— Theorem: S can be diagonalized by an orthogonal matrix, S = UAUT. All eigenvalues, A where
A = diag()), are real. The eigenvectors are the columns of U, or equivalently, the rows of U7

— Theorem: If each column of A is mean-centered, then the covariance matrix ¥ = AT A is symmetric
and positive semidefinite, meaning that all eigenvalues are nonnegative.

— Bonus: A skew symmetric matrix, defined as a matrix ST = —S, and has purely imaginary
eigenvalues. Doing a dimension reduction on a skew symmetric matrix leads to jPCA [1].

e Fitting a multivariate Gaussian to data
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— Another name for the inverse covariance matrix X! is the precision matriz. It has the same
eigenbasis as the covariance matrix:

Y~ = (U - diag(A\) - U")™! = U - diag (/1\> Ut

Where we have used the identity (ABC)~! = C~1B~1A~1

— This distribution is centered at the origin (since we mean-centered the data). The eigenvectors
(columns of U) form orthogonal axes of a hyperellipsoid. The orthogonal axes of the ellipsoid are
given by the eigenvectors (columns of U) and the relative lengths of the ellipsoid axes are given
by the eigenvalues (larger axes have larger \;)

3 Two views of PCA

e Classic view: preserving maximal variance in the projection.
maxicmize ctaTAc
subject to CTC =1

Seminal work [2] shows that the solution is to set C' to be the top r eigenvectors of the covariance matrix
(i.e. the columns of U with the largest eigenvalues). Intuitively, this fact arises from the multivariate
Gaussian perspective: take the longest axes of the hyperellipsoid and throw away the smaller ones that
contain less variance.

Technical note: We can find the top r eigenvectors by computing the singular value decomposition
(SVD) on the data matrix A.



e Equivalent view: minimizing projection distance (more generalizable view).
mini(]jfnize |A—ACCT||%
subject to CTC =1

We ||-|| r denotes the Frobenius norm. Note that W = AC, or (from the information theory persepctive)
E = C, D = CT. The objective function can be re-expressed as minimizing the reconstruction error
in the least-squares sense:
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Proving the equivalence of these two views of PCA involves simple geometric principles like the Pythagorean
theorem.
4 Equivalent solutions for PCA:

The constraint C7C = I ensures that solution to PCA is unique up to a permutation of the rows and columns
of C. When we solve PCA via an eigendecomposition of the covariance matrix, C' is naturally orthogonal
since the eigenvectors of a postive semi-definite matrix are orthogonal.

We can write re-write the PCA objective without this constraint. In this case the W and C' we find are
not unique since we can multiply them by any invertible matrix ) and get the same reconstruction error:

|A-WCT|E=[[A-WQ'QCT 7= |A-W'CT||%
Here we applied a fairly general linear transformation @) to the principal components and recovered the same

reconstruction error by applying the inverse transformation to W (the loadings). By doing this, we came up
with a new low-dimensional representation of the data represented by W’ and C’.

5 Variants on PCA:

e Generalized Low-Rank Model [3]

n P r n
minimize Zzﬁj(A¢j7ZWiijk) + ’YZTS)(Wi) + ngj)(cj)
’ k=1 =1 j

i=1 j=1 j=1

e Example: logistic PCA

n P s
mir‘}&%ize Z Z log(1 + exp(—A;; - Z WirCir))

i=1 j=1 k=1

e Example: sparse PCA
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Noise models:

Classic least-squares regression estimates a dependent variable y from an independent variable x (as-
sumed to be measured without noise). The model is y = ma + b + 1, where the noise 7 is normally
distributed with constant variance as a function of z.

PCA can be understood as a generalization where there is noise in both y and x. Specifically the noise is
isotropic. See https://liorpachter.wordpress.com/2014/05/26/what-is-principal-component-analysis/

Demixed PCA:

Figure 1:
Task is to compare stimulus frequencies separated by three second delay.
Task complexity is governed by difference in frequencies and whether first or second frequency is higher.
Panel b - Four example neurons

Panel e - Goal is to accentuate differences across conditions. Find neurons that significantly correlate
with stimulus frequency (left plot, differences across colors) or the decision (right plot, differences
between solid vs. dashed lines). Then trial average their PSTHs.

Panel h - Same goal as panel e, but use linear regression coefficients at each time point across N
neurons. Neurons that don’t correlated with stim freq. or with decision will have regression coefficients
near zero, others will contribute to the ultimate PSTH.

Panel k - New goal, capture variance in the data. Use PCA. The authors say “PCA paints a much
more complex picture of the population activity, dominated by strong temporal dynamics, with several
stimulus- and decision-related components.”

Methods:

The data is organized into a 5-way array (N neurons x T times x S stimuli x D decisions x K trials).
They collect this data into a big matrix X which is N x KSQT.

They then decompose this matrix by averaging over all combinations of time, stimulus, and decision
(and their interactions) this follows the decomposition of variance in a factorial ANOVA. Figure 8
shows a nice graphical example. The decomposition has the form:

X = Z X(b + Xnoise
¢

The core idea will be to find separate low-dimensional models that reconstruct each X, individually.

— By virtue of doing this, you achieve a low-dimensional model that encodes features about each ¢
which is the “demixing” part of this paper.

— Additionally, since the decomposition of X preserves variance, if we build low-dimensional models
that capture variance in each X4 then we also capture the bulk of the variance in the full dataset.

Concretely, the total loss function is:
1
L= ; 31X = FyDyX|%

Where we need to optimize over the “encoder” and “decoder” matrices Fy and Dy for each subproblem.
The subproblems are referred to as reduced-rank regression since the matrix FyDy is rank g.



e There is a cute way to find the solution to each subproblem by first solving AX = X4 for A by least-
squares. This produces a full-rank solution for A. Then do PCA on A and keep the top ¢ components.
F, is simply the top ¢ loadings and Dy is simply the top ¢ components. (We respectively called these
matrices “W” and “C” in the introduction.)
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