
Notes on Tensor Decompositions

Alex Williams

September 2016

These are some informal notes for a chalk-talk tutorial given at Janelia as part of the junior scientist workshop
on theoretical neuroscience.

The goal of these notes is to give a very direct and to-the-point introduction of these topics to scientists in
biology and neuroscience. Many of these topics are reviewed in greater technical detail in [14] (for matrix
decompositions) and [8] (for tensor decompositions).

1 Motivation

It is standard to represent neural dynamics in a two-dimensional table format. For example, suppose we
record the fluorescence of N neurons in a calcium imaging experiment over T video frames. Then, we denote
the fluorescence of neuron n at time t as xnt, and the full data is a matrix X containing neurons × time

(Fig 1A).

Many experimental studies in biology, neuroscience, and the social sciences follow a factorial design with
repeated measurements made from the same subject over time or under a variety of experimental conditions.
These cases do not always lend themselves to a simple matrix representation.

Suppose we repeat the recording above over K behavioral trials, and then denote the fluorescence of neuron
n at time t on trial k as xntk. The full dataset is now a neurons×time×trials tensor, denoted X (Fig 1B).

1

trial #1 trial #50 trial #100

.

phase tria
ls

ne
ur

on
s

X =
ne

ur
on

s

trial phase

A B

X=

Figure 1: Neural activity data represented in matrix and tensor formats. (A) Activity of a neural population
on a single trial. (B) Activity of a neural population across multiple trials.

Observations:

• We are interested in how neural dynamics change both within-trials (e.g., correlates of decision-making)
and across-trials (e.g., correlates of learning).

• Each mode (dimension) of the tensor can be large.

Questions:

• How do we perform dimensionality reduction on higher-order (tensor) datasets?

• How do we separate and describe across-trial (learning-related?) dynamics from within-trial dynamics?

• What are the advantages of representing data as a tensor and working with this structure directly?
Why not work with matrices?

Outline:

• Review dimensionality reduction in matrix case.

• Introduce canonical polyadic (CP) tensor decomposition.

• Time permitting, short overview of other techniques

– Tucker decomposition

– Demixed PCA

2

2 Matrix Decompositions

2.1 Basic notation:

• Uppercase-boldface letters are matrices. Lowercase-boldface letters are vectors. Non-boldface letters
are scalars.

• For this section, let X ∈ RN×T denote a matrix of neurons × time, holding firing rates.

• Denote row n of X by xn: and denote column t of X by x:t.

2.2 Three views of matrix factorization

PCA, NMF, and many other classic techniques all fit within the framework of matrix factorization.1 In
particular, they all seek to approximate the full dataset as the product of two low-rank factor matrices
A ∈ RN×R and B ∈ RT×R

X ≈ X̂ = ABT (1)

In PCA, the elements of A are called loadings and the elements of B are called the components. We instead
use more general terminology: we call A the neuron factors and B the time factors, since they respectively
provide low-dimensional representations for each neuron and each time point in the full matrix.

NMF and other variants find A and B subject to different constraints and optimization objectives. They
find different factors, but the relationship between the factors and the reconstructed dataset is the same.

It is useful to re-express Eq 1 in a couple of ways. First, consider reconstructing the activity of a single
neuron n:

x̂n: =

R∑

r=1

anrb
T
:r (2)

Thus, each neuron is a weighted sum of R prototypical activity traces.

Next, consider that the full approximation to the dataset can be expressed as the sum of R rank-one matrices.
To appreciate this, extend Eq 2 across the rows of X̂ (since the approximation for each row is decoupled).

X̂ =

R∑

r=1

a:r ◦ bT:r (3)

Where u ◦ v denotes a vector outer product, uvT . The outer product of two vectors produces a rank-one
matrix:

Y = u ◦ v ⇐⇒ yij = uivj (4)

1Dimension reduction techniques like tSNE that don’t fit in this framework are often stupid ideas

3

reconstruction

ne
ur

on
s

data matrix

+ +≈
principal components analysis (PCA)

trial phase

=19.6
-44.4
-86.9
-52.4
-44.3
84.1

-23.4
18.2
-45.4
-19.8
46.9
45.0

46.6
-1.2
16.0
-1.0
-2.3
-2.8

Figure 2: Using matrix decompositions to visualize single-trial, or trial-averaged data.

2.3 Popular matrix factorizations

2.3.1 PCA

PCA can be formulated as an optimization problem in two ways:

Figure 3: Two equivalent perspectives of PCA.

In the first (Fig 3A) we find factor matrices that maximize the retained variance after projecting the data:

let A = XB , then

maximize
B

R∑

r=1

bT:rX
TXb:r

subject to bT:rb:r = 1

(5)

In the second formulation (Fig 3B) we find factor matrices that minimize the squared reconstruction error:

minimize
A,B

∥∥X−ABT
∥∥2

F (6)

4

This second perspective is usually simpler to think about and easier to generalize, but the first is still useful
to know and we’ll refer to it in the section on demixed PCA.

Note that the solution to these optimization problems is not unique. Any invertible linear transformation F
can be used to produce a new pair of factor matrices {A′,B′} that produce an equivalent prediction:

ABT = AF−1FBT = A′B′T (7)

This indeterminacy is typically handled by imposing an additional constraint that the columns of A and B be
orthonormal. These (potentially disadvantageous) constraints are not necessary for tensor decompositions.

2.3.2 NMF

This is just the PCA objective function with the added constraint that the factor matrices be non-negative.

minimize
A,B

∥∥X−ABT
∥∥2

F

subject to anr ≥ 0, btr ≥ 0
(8)

2.3.3 Sparse PCA

There are several other variants of sparse PCA, e.g. [4].

minimize
A,B

∥∥X−ABT
∥∥2

F
+ λA

N∑

n=1

∥∥an:

∥∥
1

+ λB

T∑

t=1

∥∥bt:
∥∥

1
(9)

2.3.4 Logistic PCA

minimize
A,B

N∑

n=1

T∑

t=1

log

(
1 + exp

(
−xnt ·

R∑
r=1

anrbtr

))
(10)

2.3.5 Generalized Low-Rank Model

Described in [14], code available at: https://github.com/madeleineudell/LowRankModels.jl

minimize
A,B

I∑

i=1

J∑

j=1

`j (xij , x̂ij) +

I∑

i=1

ρi(ai:) +

J∑

j=1

γj(bj:)

subject to X̂ = ABT

(11)

2.4 Fitting matrix factorizations

• PCA can be solved by truncated SVD.

5

https://github.com/madeleineudell/LowRankModels.jl

– Rare and special case of a nonconvex problem that can be provably solved in polynomial time.

• All others, solve by alternating gradient descent and similar techniques.

– X̂ = ABT is biconvex, meaning that it is convex if you fix either A or B and optimize over the
other variable.

– Alternate back-and-forth to solve (or approximately solve) convex subproblems.

– In general, no guarantees that you reach a global optimum. However, for certain problems it has
been proven that there are no local minima (i.e. all critical points are saddle points); see [13, 5].
And therefore gradient descent converges to the global minimum under extremely mild conditions
[9].

• For certain problems, notably NMF [6], there are specialized algorithms that take advantage of the
problem structure.

3 Canonical Polyadic (CP) Tensor Factorization

Extending matrix factorization techniques to tensor datasets is conceptually simple, but not widely used in
systems neuroscience. (But see the cognitive and neuroimaging literature for some applications [10, 11, 12, 1].)

Since we are in an exploratory data analysis setting, interpretability is an important goal for us. Thus, we’ll
focus on CP tensor factorization, which is particularly simple and interpretable generalization of the ideas
expressed in the previous section.

Some notation and basic terms (not too critical to memorize):

• The order of a tensor is the number of dimensions it has (ndims(X) would give the order in MAT-
LAB/Julia). A vector is an order-1 tensor, and a matrix is an order-2 tensor.

• Each indexed dimension is also called a mode of the tensor. E.g. size(X,1) would give the size
of a tensor along the first mode, while size(X,2) would give the size along the second mode in
MATLAB/Julia.

• Order-3 tensors and higher-order tensors are denoted by bold letters in calligraphic font, e.g. X .

Let X ∈ RN×T×K denote a neurons×time×trials data tensor holding neural activity. We will apply CP
decomposition to achieve separate low-dimensional representations for within-trial dynamics and across-trial
dynamics.

For a third-order tensor, CP decomposition finds a set of three factor matrices, A, B, and C that approximate
the data set as the sum of R vector outer products:

X̂ =

R∑

r=1

a:r ◦ b:r ◦ c:r (12)

which is very similar to the formulation of matrix decomposition in Eq 3.

Eq 12 can be visualized as follows:

6

phase tria
ls

ne
ur

on
s

≈ + +

Canonical Polyadic (CP) tensor decomposition

Figure 4: Canonical Polyadic (CP) tensor decomposition on a 3rd order tensor of neural data (see Fig ??B).
Similar to Fig 2, the data are approximated as a sum of vector outer products. The first two (a:r, blue; and
b:r, red) provide low-dimensional embeddings of the neurons and within-trial dynamics (again, compare to
Fig 2). The third set of vectors (c:r, green) provide a low-dimensional embedding of the across-trial changes
in dynamics (e.g. learning-related dynamics).

Note that the vector outer product readily generalizes to 3-dimensions and higher. The outer product of
three vectors u, v, and w produces a rank-one, third-order tensor :

Y = u ◦ v ◦w ⇐⇒ yijk = uivjwk (13)

CP decomposition introduces a third factor matrix, C, which we call the trial factors.

Classically, the CP factors are fit in by minimizing squared error (similar to PCA):

minimize
A,B,C

N∑

n=1

T∑

t=1

K∑

k=1

(xntk − x̂ntk)
2 (14)

But this approach can be adapted to different loss functions if desired (e.g. [3]).

3.1 Interpretations and relation to PCA

Under a CP model, the activity of a single neuron on a particular trial is:

x̂n:k =

R∑

r=1

anrckrb:r (15)

This is similar to PCA (compare to Eq 2), in that each neuron’s activity is approximated as a combination
of components (b:r) but each component is weighted by a neuron-specific coefficient (anr) and a trial-specific
coefficient (ckr).

Thus, the fundamental difference between CP and PCA is the introduction of trial-specific re-scaling. This
is even more apparent in the following equation, which shows how the CP model approximates the entire
population activity for a single trial (compare to Eq 1):

X̂::k = ADiag(ck:)B
T (16)

where Diag(·) transforms a vector into a diagonal matrix.

7

Eq 16 can be visualized as follows:

first trial last trial
factors data

Figure 5: The direction of the factors (red lines) are fixed across trials, but their magnitude can change to
reflect rotations/other changes in the data (blue dots). For example, each data point could correspond to
a T -dimensional vector (holding a neuron’s activity on a specified trial) and the factors would describe an
R-dimensional embedding/approximation of these data.

Eq 16 also provides intuition for why CP factorizations — unlike PCA — are unique. Since the middle
matrix, i.e. Diag(ck:), is constrained to be diagonal, an arbitrary linear transformation (i.e., matrix F in
Eq 7) cannot be introduced without destroying the diagonal structure. However, we can sneak in permutation
and scaling transformations and still preserve the diagonality. This non-uniqueness does not matter to much
since we mostly care about the shape/direction of the latent factors.

It is useful to have a standard procedure for permuting and re-scaling the CP factors so that the factorization
is unique:

• The factors (columns of A, B, and C) are normalized to unit length. The scalings are absorbed into
λi.

• The signs of the factors are flipped so that all λi are positive.

• The factors are permuted to order them from largest to smallest λr.

4 Tucker Decompositions

This section can be skipped unless you have a burning desire to be a tensor aficionado.

CP decomposition is a special case of a more general class called Tucker decompositions. Here, X ∈ RI×J×K
is approximated based on a smaller core tensor, S ∈ RRi×Rj×Rk , and three factor matrices A ∈ RI×Ri ,
B ∈ RJ×Rj , and C ∈ RK×Rk . Of course, the Tucker model readily generalizes to higher-order tensors, but
we’ll stick to three-dimensions to simplify presentation.

8

Figure 6: Tucker decomposition of a third-order tensor. Reproduced from [8].

The Tucker model is:

x̂ijk =

Ri∑

ri

Rj∑

rj

Rk∑

rk

srirjrkairibjrjckrk (17)

Unlike CP decomposition, the Tucker model allows for there to be a different number of factors (i.e.
{Ri, Rj , Rk}) along each mode of the tensor.

CP decomposition maps onto a Tucker decomposition where the core tensor is constrained to be super-
diagonal. To see this, start with Eq 19 and impose that the core tensor is square (Ri = Rj = Rk = R) and
zero unless ri = rj = rk = r, then three sums simplify to the CP model:

x̂ijk =

R∑

r

λrairbjrckr ⇐⇒ X̂ =

R∑

r

λra:r ◦ b:r ◦ c:r

There are two major disadvantages to using Tucker decompositions for exploratory data analysis.

• The core tensor is difficult to visualize

• The decomposition is invariant to rotations in the factor matrices (similar to Eq 7 in the case of PCA)

To appreciate this second point, let S×mF denote multiplication along mode-m of a tensor S with a matrix
F, defined for the first three modes as:

(S ×1 F)irjrk =
∑

ri

srirjrkfrii

(S ×2 G)rijrk =
∑

rj

srirjrkgrjj

(S ×3 H)rirjk =
∑

rk

srirjrkhrkk

(18)

Which means that the Tucker model is:2

x̂ijk = S ×1 A×2 B×3 C (19)

2The order of this multiplication is irrelevant

9

We can now make a formal statement for the lack of uniqueness for the Tucker model. Let {S,A,B,C} and

{S ′,A′,B′,C′} denote the parameters for two Tucker models. These models produce the same X̂ if:

S ′ = S ×1 F×2 G×3 H

A′ = AF−1

B′ = BG−1

C′ = CH−1

(20)

Which follows from a basic property of mode-m tensor-matrix multiplication:

S ×1 U×1 V = S ×1 VU

5 Matrix-based alternatives

5.1 Forcing tensor datasets into the matrix decomposition framework

Neuroscientists have been unwittingly working with tensor datasets for a long time. Since matrix decompo-
sition techniques are easier to come by (e.g. PCA is a standard function in MATLAB/Python/Julia), the
standard protocol in the field is to flatten the tensor into a matrix and then perform data analysis.

A common approach is to consider the unfolding in Fig ??A to find a low-dimensional representation of
neurons. Then, each trial can be projected onto this low-dimensional subspace:

trial 1 trial k trial K

.ce
lls

1

N

ce
lls

1

N

PCA

neuron
factors

.

mix of time and trial factors

PC 1

P
C

 2

Figure 7: Applying PCA to tensor unfoldings. The data tensor can be unfolded or matricized along each of
the three modes. (A) Unfolding the tensor along the first mode produces a matrix which we call the neurons
unfolding of the tensor. (B) Unfolding along the third mode produces the trials unfolding. (C) Unfolding
along the second mode produces the time unfolding. Fitting PCA (or any other matrix decomposition) to
these unfoldings produces a low-dimensional embedding for the (A) neurons, (B) trials, and (C) within-trial
dynamics/phase.

Potential advantages comapared to CP decomposition:

• Imposing orthogonality amongst the factors can be helpful to visualize data in 2d or 3d plots. Although
CP factors can also be orthogonalized for visualization.

• In the case of PCA, there is no worry about getting stuck in a local minima.

10

• Greater familiarity in the field.

Possible disadvantages:

• There is no connection/matching between the low-dimensional factors. In CP decomposition, the
factors come in a set: each neuron factor (column r of A) is matched to a within-trial time factor
(column r of B) and across trial factor (column r of C). So, e.g., if you find a particular across-trial
trend, it is trivial to go back and see which neurons participate in this trend and what their within-trial
dynamical pattern is.

• If using PCA, the factors are not unique due to Eq 7. Thus, PCA is useful for finding a linear subspace
for visualizing the data, whereas CP decomposition goes beyond that and tries to identify latent factors
that are directly interpretable/meaningful.

5.2 Demixed PCA (dPCA)

5.2.1 Notation

As before, let xntk denote the firing rate of neuron n at time t on trial k. Define the trial-averaged firing
rate for neuron n as:

xnt· =
1

K

K∑

k=1

xntk

This “dot notation” for averaging can be extended to average over any other indexed variable (or comibi-
nation). For example, if each trial is one of several experimental conditions indexed by c ∈ {1, ..., C}, then
xntck denotes the firing rate of neuron n across trials and conditions. Assuming an equal number of trials
for each condition,3 the average firing rate across all trials and conditions is:

xnt·· =
1

KC

C∑

c=1

K∑

k=1

xntck

5.2.2 Overview

DPCA [7] is a supervised dimension reduction technique4 that aims to tradeoff between two competing aims:

• Find components that retain as much variance in the data as possible

• Have each component explain variance only along a specified indexed variable.

DPCA is a tradeoff between PCA (which finds a linear projection retaining maximal variance) and linear
discriminant analysis (LDA, which finds a linear projection that maximally separates class labels). Geomet-
rically, this looks like the following:

3This actually ends up being an important assumption that is often violated, see methods of [7] for dealing with this scenario.
4Demixed PCA was also described in an earlier publication from the same group [2]. There are small technical details

between the reports, so we focus on the most recent publication.

11

Figure 8: Geometric intuition of DPCA as a tradeoff between PCA and LDA. Figure reproduced from [7].

5.2.3 Sum-of-squares partition

The central observation of DPCA is that the total variance in the dataset can be partioned as shown in
Fig 9. This is often called the sum-of-squares partition ([7] call it the marginalization procedure).

Figure 9: DPCA marginalization procedure for three example neurons. Firing rates across all trials are
shown at left. Each trial is associated with a stimulus condition (line colors) and a behavioral decision
the animal made (dotted vs solid lines), which are analogous to independent variables in regression. The
firing rate for a neuron on any particular trial is modeled as a linear sum of the average firing rate for that
condition and decision. This figure is reproduced from [7].

The partitioning of variance generalizes to having multiple independent variables (e.g., across experimental
conditions, behavioral outcomes/decisions, see [7]). We will prove a simple case for a single neuron:

T∑

t=1

K∑

k=1

(xntk − xn··)2

︸ ︷︷ ︸
total variability

in neuron n

=

T∑

t=1

K∑

k=1

(xntk − xnt·)2

︸ ︷︷ ︸
variability of n

about its trial-averaged
firing rate

+

T∑

t=1

K∑

k=1

(xnt· − xn··)2

︸ ︷︷ ︸
variability of n’s

trial-averaged firing rate

Proof:

12

total variance in neuron n ∝
T∑

t=1

K∑

k=1

(xntk − xn··)2

=

T∑

t=1

K∑

k=1

[(xntk − xnt·) + (xnt· − xn··)]2

=

T∑

t=1

K∑

k=1

[
(xntk − xnt·)2 + 2(xntk − xnt·)(xnt· − xn··) + (xnt· − xn··)2

]

=

T∑

t=1

K∑

k=1

(xntk − xnt·)2 + 2

T∑

t=1

K∑

k=1

(xntk − xnt·)(xnt· − xn··) +

T∑

t=1

K∑

k=1

(xnt· − xn··)2

=

T∑

t=1

K∑

k=1

(xntk − xnt·)2 + 2

T∑

t=1

(xnt· − xn··)
K∑

k=1

(xntk − xnt·)
︸ ︷︷ ︸

(∗)

+

T∑

t=1

K∑

k=1

(xnt· − xn··)2

The highlighted term (∗) is zero, which follows from a basic property of the arithmetic mean (i.e., the sum
of absolute deviations from a sample mean is zero):

K∑

k=1

(xntk − xnt·) =

K∑

k=1

(
xntk −

1

K

K∑

k=1

xntk

)

=

K∑

k=1

xntk −K
(

1

K

K∑

k=1

xntk

)

=

K∑

k=1

xntk −
K∑

k=1

xntk = 0

This basic concept also arises in ordinary linear regression as schematized in Fig 10. This can be derived in a
manner similar to above (instead of using a property of the average, use a property of the normal equations).

13

ȳ

ŷi

yi

model

data average
∑

i(yi − ȳ)2︸ ︷︷ ︸
total variance

=
∑

i(yi − ŷi)
2

︸ ︷︷ ︸
unexplained variance

+
∑

i(ŷi − ȳ)2︸ ︷︷ ︸
explained variance

yi − ȳ︸ ︷︷ ︸
(a)

= yi − ŷi︸ ︷︷ ︸
(b)

+ ŷi − ȳ︸ ︷︷ ︸
(c)

(c)

(a)

(b)

residual A: Trivial decomposition of each datapoint:

B: The same partition holds for squared devivations:

Figure 10: Partitioning data into aspects that are explainable and unexplainable by a linear model.

5.2.4 DPCA algorithm

We’ll be brief here, since [7] provides a nice and understandable description in their methods.

Consider the following variables associated with each measurement of population activity:

• time within trial (t ∈ {1, ..., T})

• stimulus condition (s ∈ {1, ..., S})

• decision/behavior (d ∈ {1, ..., D})

Partition the data X across trials indexed by k ∈ {1, ...,K} using the basic methods from of the previous
section.

X = X(t) + X(s) + X(ts)︸ ︷︷ ︸
X(ts)

+X(d) + X(td)︸ ︷︷ ︸
X(td)

+X(tsd) + X(tsdk)︸ ︷︷ ︸
X(noise)

(21)

Note that we lump a few terms together.

Again, the important detail is that this decomposition preserves the total variance and distributes it among
these terms.

Finally, for each term, the following reduced-rank regression problem is solved:

minimize
Fφ,Dφ

∥∥Xφ − FφD
T
φ

∥∥2

F (22)

Where φ ∈ (t), (td), (ts), (tsd) indexes over the data partitions, and the low-rank matrices Fφ and Dφ provide
low-dimensional embedding of the data selectively for each data partition.

This reduced reduced-rank regression optimization problem can be solved exactly using the SVD.

14

5.2.5 Comparison to CP decomposition

Demixed PCA can be applied to tensor data (though the data need not be balanced) but still applies
to a matrix unfolding of the data. Rather than finding low-dimensional factors along higher-order tensor
dimensions, it finds PCA factors similar to Fig 7.

One particularly nice application the demixing procedure is to regress away the effects of nuisance variables
or confounding factors.

References

[1] Evrim Acar, Canan Aykut-Bingol, Haluk Bingol, Rasmus Bro, and Blent Yener. Multiway analysis of
epilepsy tensors. Bioinformatics, 23(13):i10–i18, 2007.

[2] Wieland Brendel, Ranulfo Romo, and Christian K Machens. Demixed principal component analysis. In
Advances in Neural Information Processing Systems, pages 2654–2662, 2011.

[3] Eric C Chi and Tamara G Kolda. On tensors, sparsity, and nonnegative factorizations. SIAM Journal
on Matrix Analysis and Applications, 33(4):1272–1299, 2012.

[4] Alexandre d’Aspremont, Laurent El Ghaoui, Michael I Jordan, and Gert RG Lanckriet. A direct
formulation for sparse pca using semidefinite programming. SIAM review, 49(3):434–448, 2007.

[5] Rong Ge, Jason D. Lee, and Tengyu Ma. Matrix completion has no spurious local minimum, 2016.

[6] Jingu Kim, Yunlong He, and Haesun Park. Algorithms for nonnegative matrix and tensor factorizations:
a unified view based on block coordinate descent framework. Journal of Global Optimization, 58(2):285–
319, 2014.

[7] Dmitry Kobak, Wieland Brendel, Christos Constantinidis, Claudia E Feierstein, Adam Kepecs,
Zachary F Mainen, Xue-Lian Qi, Ranulfo Romo, Naoshige Uchida, and Christian K Machens. Demixed
principal component analysis of neural population data. eLife, 5:e10989, apr 2016.

[8] Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications. SIAM Review,
51(3):455–500, 2009.

[9] Jason D. Lee, Max Simchowitz, Michael I. Jordan, and Benjamin Recht. Gradient descent converges to
minimizers, 2016.

[10] Fumikazu Miwakeichi, Eduardo Martnez-Montes, Pedro A. Valds-Sosa, Nobuaki Nishiyama, Hiroaki
Mizuhara, and Yoko Yamaguchi. Decomposing {EEG} data into spacetimefrequency components using
parallel factor analysis. NeuroImage, 22(3):1035 – 1045, 2004.

[11] Morten Mørup, Lars Kai Hansen, Christoph S Herrmann, Josef Parnas, and Sidse M Arnfred. Parallel
factor analysis as an exploratory tool for wavelet transformed event-related eeg. NeuroImage, 29(3):938–
947, 2006.

[12] Morten Mrup, Lars Kai Hansen, and Sidse M. Arnfred. Erpwavelab: A toolbox for multi-channel analysis
of timefrequency transformed event related potentials. Journal of Neuroscience Methods, 161(2):361 –
368, 2007.

[13] Nathan Srebro and Tommi Jaakkola. Weighted low-rank approximations. In ICML, volume 3, pages
720–727, 2003.

[14] Madeleine Udell, Corinne Horn, Reza Zadeh, and Stephen Boyd. Generalized low rank models. Foun-
dations and Trends R© in Machine Learning, 9(1):1–118, 2016.

15

	Motivation
	Matrix Decompositions
	Basic notation:
	Three views of matrix factorization
	Popular matrix factorizations
	PCA
	NMF
	Sparse PCA
	Logistic PCA
	Generalized Low-Rank Model

	Fitting matrix factorizations

	Canonical Polyadic (CP) Tensor Factorization
	Interpretations and relation to PCA

	Tucker Decompositions
	Matrix-based alternatives
	Forcing tensor datasets into the matrix decomposition framework
	Demixed PCA (dPCA)
	Notation
	Overview
	Sum-of-squares partition
	DPCA algorithm
	Comparison to CP decomposition

