
1

Fast Convolutive Nonnegative Matrix Factorization
Through Coordinate and Block Coordinate Updates

Anthony Degleris, Benjamin Antin, Surya Ganguli, Alex H Williams

Abstract—Identifying recurring patterns in high-dimensional
time series data is an important problem in many scientific do-
mains. A popular model to achieve this is convolutive nonnegative
matrix factorization (CNMF), which extends classic nonnegative
matrix factorization (NMF) to extract short-lived temporal motifs
from a long time series. Prior work has typically fit this
model by multiplicative parameter updates—an approach widely
considered to be suboptimal for NMF, especially in large-scale
data applications. Here, we describe how to extend two popular
and computationally scalable NMF algorithms—Hierarchical Al-
ternating Least Squares (HALS) and Alternatining Nonnegative
Least Squares (ANLS)—for the CNMF model. Both methods
demonstrate performance advantages over multiplicative updates
on large-scale synthetic and real world data.

Index Terms—Convolutive nonnegative matrix factorization,
hierarchical alternating least squares, alternating nonnegative
least squares, coordinate descent

I. INTRODUCTION

NMF models a matrix of nonnegative data, X, as the
product two low rank and nonnegative matrices, thus ap-
proximating each datapoint (a row or column of X) as a
conical combination of basis features or latent factors [1], [2].
When the low rank assumption is appropriate, NMF often
yields highly interpretable descriptions of data and thus is
a highly effective tool for exploratory data analysis. NMF
has been applied to high-dimensional time series data, with
applications ranging from audio processing, image processing,
neuroscience, and text mining [2]–[5].

However, many time series contain short-term temporal
correlations or sequences of events that are not approximately
low rank, and thus cannot be extracted by NMF. For example,
audio recordings are typically represented and visualized as
spectrograms, which display the frequency content of sound
over time as the signal varies. Many sounds of interest have
recognizable signatures in the frequency domain, which are not
low rank—e.g. phonemes in human speech data may slightly
change in frequency (pitch) over their production interval.
Similarly, in time series data from neuroscience, it is common
to find clusters of brain cells that fire in a rapid sequence
[6], [7]. NMF could efficiently model these firing events if
neurons fired simultaneously; however, sparse sequences of
neural firing yield high rank data matrices. At best, NMF can

This work received support from the Department of Energy Computational
Science Graduate Fellowship (CSGF) program, the Burroughs Wellcome
Fund, the Alfred P. Sloan Foundation, the Simons Foundation, the McKnight
Foundation, the James S. McDonell Foundation, and the Office of Naval
Research.

The authors are with the Departments of Electrical Engineering (A.D.,
B.A.), Applied Physics (S.G.), and Statistics (A.H.W.), Stanford University,
Stanford, CA 94305 USA (e-mail: ahwillia@stanford.edu).

only describe such sequences through multiple latent factors.
At worst, including additional factors to fit such structure may
result in overfitting.

Convolutive NMF (CNMF) is a simple extension of the
NMF model that overcomes these shortcomings. As its name
suggests, CNMF introduces convolutional structure into the
low rank model reconstruction, and thus captures short-term
temporal dependencies in time series data [8], [9]. The CNMF
model has been effective in a variety of applications, including
neuroscience [10], medical data mining [11], and audio signal
processing [12].

In recent years, algorithms for NMF have matured to a stage
where it is computationally tractable to fit very large datasets
[13], [14]. However, the CNMF model cannot be viewed as a
special case of NMF, and thus these algorithmic improvements
are not immediately transferable to CNMF. As a result, while
many high-performance and computationally scalable code
packages are available for NMF [15], [16], algorithms and
implementations of CNMF are less mature.

The Multiplicative Update (MU) algorithm appears to be
the most common optimization routine for CNMF in published
literature [8]–[10], [12]. This method was originally developed
for NMF [1], [17], and later adapted to CNMF [8], [9]. How-
ever, subsequent work found MU to be relatively ineffective
for NMF [2], suggesting that MU may also be suboptimal
for CNMF. Here we derive two new algorithms for the
CNMF model—Hierarchal Alternating Least Squares (HALS)
and Alternating Nonnegative Least Squares (ANLS)—both of
which can be understood as extensions of successful NMF
algorithms [2] and are special cases of coordinate and block
coordinate descent [18], [19]. We show that HALS and ANLS
outperform MU on CNMF models fit to large-scale data.
Additionally, we derive several reformulations of the CNMF
objective function which lead to new and useful interpretations
of the model.

II. BACKGROUND

A. Notation

We denote a vector with P real-valued entries as x ∈ RP ,
a P × Q matrix as X ∈ RP×Q, and a P × Q × R tensor
(in this paper, a tensor is an array with three indices) as
X ∈ RP×Q×R. If a matrix (or vector or tensor) has strictly
nonnegative entries, we write X ∈ RP×Q+ , or alternatively
X ≥ 0.

We denote the ith slice of the tensor X along its first mode
as Xi::, which indicates the first index is fixed to i while the
rest remain free. In our example above, Xi:: refers to a matrix

ar
X

iv
:1

90
7.

00
13

9v
1 

 [
cs

.L
G

] 
 2

9 
Ju

n 
20

19



2

(a) (b)

Fig. 1. Schematic illustration of NMF and CNMF models fitting the same dataset. (a) NMF models a data matrix X (lower right) the product of W (matrix
with K = 5 columns, left) and H (matrix with K = 5 rows, top). In the “sum-of-outer-products” interpretation of the model, each column of W represents
a group of simultaneously activated features, while the corresponding row of H represents the times at which this group of features is active. (b) CNMF
extends this “sum-of-outer-products” interpretation using a convolution operator instead of a vector outer product. Here, the same data are modeled using a
tensor W (tensor with K = 2 slices, left) and H (matrix with K = 2 rows, top). Each of the K slices of W can be thought as a spatiotemporal feature
of temporal duration L, and the times at which each such feature is convolutionally activated are specified by the corresponding row of H. This structure
enables a much more compact and interpretable representation of this example time series.

of size Q×R, whereas X::i refers to a matrix of size P×Q. In
the following sections, we overload the notation W` = W`::

to refer to the matrix created by fixing the index of the tensor
W along the first mode. Concretely, if W is a tensor of size
L×N ×K, then W` is a matrix of size N ×K.

The symbol � refers to element-wise multiplication of
matrices, i.e. (A � B)ij = AijBij (Hadamard product).
Similarly, the notation A

B refers to element-wise division. In
all cases, the norm of a vector, matrix, or tensor is defined as
the root sum-of-squares. For a tensor X ∈ RI×J×K , this is

‖X‖ =

 I∑
i=1

J∑
j=1

K∑
k=1

X 2
ijk

1/2

.

The symbol ⊗ refers to the Kronecker product between two
matrices. If A ∈ Rm×n and B ∈ Rp×k, then the Kronecker
product A⊗B ∈ Rmp×nk is

A⊗B =

A11B . . . A1nB
...

. . .
...

Am1B . . . AmnB

 .
If the matrix A has columns a1, . . . ,an, then the vector-

ization of A is defined as

vec(A) =

a1...
an

 .
When discussing update rules that solve the NMF and

CNMF problem, we use superscripts to denote the iteration
number of the algorithm. For example, W(i) refers to the
matrix W at the ith iteration of an algorithm or update scheme,
W(i+1) refers to the next iterate, and so on.

B. The NMF and CNMF models

Given a data matrix X ∈ RN×T+ , NMF attempts to find two
nonnegative factor matrices W ∈ RN×K+ and H ∈ RK×T+ that

roughly approximate X. Formally, the NMF problem is:

minimize
W,H

‖X−WH‖2

subject to W ≥ 0,H ≥ 0.
(1)

This model can be reformulated as a sum of outer products.
Letting w1, ...,wK be the columns of W and hT

1 , ...,h
T
K be

the rows of H, the objective is:

minimize
w1,...,wk
h1,...,hk

‖X−
K∑
k=1

wkh
T
k‖2

subject to wk ≥ 0,hk ≥ 0 ∀k ∈ {1, 2, ...,K}.

(2)

The NMF model can be effective when X is nonnegative
and approximately low rank. However, NMF may perform
poorly as a feature extraction method when X contains
short-lived temporal motifs with high-rank structure. This is
demonstrated schematically in Figure 1a. The data matrix
X represents a time series with T measurements, with each
column representing a single measurement of N variables.
For example, N could be the number of frequency bins in
a spectrogram representation of an audio signal [9], or the
number of recorded cells in a neural time series [10]. These
time series can contain short-lived patterns that are not low-
rank (in Fig. 1, two different recurring patterns are shown in
shades of red and green). This results in NMF requiring many
dimensions (i.e. a large choice for K) to capture the structure
in the data. This hampers interpretability as visible patterns in
the data are split across multiple factors.

The convolutive NMF (CNMF) model was developed to ad-
dress this shortcoming [8]. CNMF finds a matrix H ∈ RK×T+

and a tensor W ∈ RL×N×K+ that minimizes the following
objective:

minimize
W,H

‖X−
L∑
`=1

W`HS`−1‖2

subject to W ≥ 0,H ≥ 0,

(3)

where S` is a T × T column right-shift matrix, defined as
a matrix with ones along the `th upper diagonal and zeros



3

otherwise. If ei denotes the ith standard basis vector, then
eTi S` = eTi+` when i+ ` ≤ T . A visual demonstration makes
the role of S` clear:

A =

[
1 2 3 4
5 6 7 8

]
, AS1 =

[
0 1 2 3
0 5 6 7

]
AS2 =

[
0 0 1 2
0 0 5 6

]
, . . .

When L = 1, CNMF reduces exactly to NMF. Like ordinary
NMF, CNMF also has a natural “sum of outer products” form.
If we consider the slices W::1, ...,W::K ∈ RL×N+ and the
row vectors hT

1 , . . . ,h
T
K of the matrix H, we can define the

convolution operator ∗ by

A = WT
::k ∗ hT

k , Ant =

L∑
`=1

W`nkHk,t−`. (4)

which can alternatively be written as

WT
::k ∗ hT

k =

T∑
τ=1

Hkτ

[
0τ−1 WT

::k 0T+1−L−τ
]
. (5)

where 0p signifies p columns of zeros. To make the notation
more concise, we abbreviate the zero-padding as follows:[

WT
::k

]
τ
=
[
0τ−1 WT

::k 0T+1−L−τ
]

(6)

WT
::k ∗ hT

k =

T∑
τ=1

Hkτ

[
WT

::k

]
τ

(7)

Using equation 5, we rewrite the CNMF objective as

minimize
W,H

‖X−
K∑
k=1

WT
::k ∗ hT

k‖2

subject to W ≥ 0,H ≥ 0.

(8)

Here, each W::k ∈ RN×L represents a short-lived temporal
pattern, or motif, that may have full rank. The nonzero entries
of each hk ∈ RT represent the times at which this motif
occurs. For the idealized time series in Figure 1, CNMF
pulls out a simpler and more interpretable description of data
than NMF. In essence, CNMF extracts 2 recurring patterns,
corresponding to K = 2 factors in the model. In contrast,
NMF requires K = 5 model factors.

We note here briefly that different boundary conditions
could be specified for the convolution operation in eq. 8.
We adopted zero-padding for these boundary conditions as
it appears to be the most standard choice in prior literature
[9], [10]. Only minor modifications to our exposition would
be needed to handle different choices. For example, H could
be re-specified as a K × (T − L) matrix and each S` could
be specified as a (T − L) × T matrix to specify convolution
without padding.

C. Multiplicative Update (MU) Algorithms

The objective of the NMF problem (equation 1) is non-
convex, and finding an exact solution is NP-hard in general
[20]. This had led to extensive algorithmic research on NMF,

producing several effective heuristic algorithms [2] and condi-
tions guaranteeing an exact solution in polynomial time [21],
[22].

One such heuristic algorithm for NMF is the Multiplicative
Update (MU) algorithm. The MU algorithm repeatedly updates
W and H according to the following update rule [17]

W(i+1) = W(i) � XH(i)T[
W(i)H(i)

]
H(i)T

, (9)

where the index i refers to the current iteration of the algo-
rithm. By the symmetry of the NMF problem (the objective
can be expressed as ‖XT −HTWT ‖), the same update rule
can be applied to H. In reality, the MU algorithm is actually
just gradient descent with per-parameter scaling factors [18].
Its popularity stems from several desirable properties—the
update rule is monotonic, simple to implement, and preserves
nonnegativity.

Since NMF is a special case of CNMF (with L = 1), solv-
ing the latter problem exactly is also NP-hard. Accordingly,
heuristic algorithms are also used to fit CNMF, most notably
a generalization of MU [9]. In this case, the update rules are

W
(i+1)
` = W

(i)
` �

X(H(i)S`)
T

X̂(i)(H(i)S`)T
, (10)

H(i+1) = H(i) �
∑L
`=1 W

(i)T
` XS−`∑L

`=1 W
(i)T
` X̂(i)S−`

, (11)

where X̂(i) =
∑L
`=1 W

(i)
` H(i)S`−1 is our reconstruction of

X. As in the NMF case, MU is easy to implement and has
been applied frequently to fit CNMF. Nevertheless, past work
has shown MU to be suboptimal for fitting NMF compared
to other coordinate descent algorithms [2], [18]. We reasoned
that exploiting similar coordinate and block-coordinate updates
would lead to performance benefits in the case of CNMF.

D. Hierarchical Alternating Least Squares (HALS) for NMF

Hierarchical alternating least squares (HALS) is a coordi-
nate descent method used to fit NMF [2], [23]. Each update
step solves a constrained optimization problem exactly for a
single column of W or row of H. To update a single column
wp, we reformulate the NMF objective as

J(W,H) =

∥∥∥∥∥X−
K∑
k=1

wkh
T
k

∥∥∥∥∥
2

=

∥∥∥∥∥∥
X−

∑
k 6=p

wkh
T
k

−wph
T
p

∥∥∥∥∥∥
2

(12)

and fix all variables except for the pth column of W.1

Minimizing over wp is a convex problem, and the Karush-

1As in the case of MU, the symmetry of the NMF problem allows us to
use the same rule for H. For a more detailed derivation of the HALS updates
for NMF, see [23].



4

Kuhn-Tucker (KKT) conditions for optimality generate the
closed-form update rules [23]:

w(i+1)
p = max

0,

[
X−

∑
k 6=pw

(i)
k h

(i)T
k

]
h
(i)
p

‖h(i)
p ‖2

 . (13)

Numerical experiments suggest this update rule notably out-
performs MU [2]. One possible explanation for this is that
although both algorithms have a similar flop count to update
all of W, HALS solves many exact problems whereas MU
computes a single, inexact gradient step.

E. Alternating Nonnegative Least Squares (ANLS) for NMF

Another popular approach to the NMF problem is to fix W
or H, and to solve the resulting convex sub-problem exactly.
This leads to an algorithm known as Alternating Nonnegative
Least Squares (ANLS), whose updates are:

W(i+1) = argmin
W≥0

‖X−WH(i)‖2, (14)

H(i+1) = argmin
H≥0

‖X−W(i+1)H‖2. (15)

Each of these updates amounts to solving a nonnegative least
squares problem, which has been extensively studied in the
optimization literature [24], [25]. Thus, one can leverage
existing nonnegative least squares solvers to compute the
solution to each sub-problem. A variety of such solvers are
available, including active-set methods, quasi-newton methods,
and projected gradient methods [2]. This motivates us to also
extend the ANLS approach to fit CNMF.

III. NEW ALGORITHMS FOR CNMF
A. HALS

In this section, we demonstrate how to extend HALS to fit
the CNMF model, highlighting the key reformulations used in
deriving the update rule.

Updating W: Recall the CNMF objective from (3). The
sum

∑
`W`HS`−1 can be written as a block matrix product

by defining

∼
W=

[
W1 W2 ... WL

]
,

∼
H=


HS0

HS1

...
HSL−1

 .
Using the fact that

∑
`W`HS`−1 =

∼
W
∼
H, we can reformulate

the CNMF objective as

minimize
W,H

‖X−
∼

W
∼
H ‖2

subject to
∼

W≥ 0,
∼
H≥ 0,

∼
H`K:(`+1)K,:=

∼
H0:K,: S`

for all ` = {0, . . . , L− 1},

(16)

where the last constraint ensures that
∼
H has the block matrix

structure described above. This reveals an important fact: the
CNMF approximation is an NMF factorization with linear
constraints on

∼
H.

Due to this reformulation, it is clear that the HALS update
rule for NMF extends easily to W . When updating W , we
treat H as fixed, and thus we can ignore the linear constraints
in 16. Letting

∼
wp∈ RN be the pth column of

∼
W and

∼
hp∈ RT

be the pth row of
∼
H, we have the update rule

∼
w

(i+1)

p := max

0,

[
X−

∑
j 6=p

∼
w

(i)

j

∼
h
(i)T

j

]
∼
h
(i)

p

‖
∼
h
(i)

p ‖2

 . (17)

This rule allows us to update w`,:,k using p = (l − 1)L +

k. Note that in practice, the matrices
∼
H,

∼
W do not need to

be explicitly instantiated. Each
∼
wp is simply an array view

into W , and each block matrix HS` comprising
∼
H can be

computed on demand.
Updating H: Deriving an update rule for H is more com-

plicated due to the convolutive structure imposed on H. We
first consider the outer product form of the CNMF objective
from equation 8 and expand the convolution operator∥∥∥∥∥X−

K∑
k=1

WT
::k ∗ hT

k

∥∥∥∥∥
2

=

∥∥∥∥∥X−
K∑
k=1

T∑
τ=1

Hkτ

[
WT

::k

]
τ

∥∥∥∥∥
2

=
∥∥∥E(i) −Hkt

[
WT

::k

]
t

∥∥∥2 , (18)

where [WT
::k]t is the matrix WT

::k padded with t− 1 columns
of zeros on the left and T + 1 − L − t columns of zeros on
the right (first defined in (6), and where we define E(i) as

E(i) =

X(i) −
∑

(p,τ)6=k,t

H(i)
pτ

[
W(i)T

::p

]
τ


:,t:t+L−1

. (19)

This equation is reminiscent of equation 12, and indeed leads
to a related update rule. Fixing all variables but a single entry
Hkt, we can derive the Lagrangian and corresponding Karush-
Kuhn-Tucker (KKT) conditions for optimality (see Appendix
B-B). This leads us to a closed form update rule for a single
entry of H:

H
(i+1)
kt = max

(
0,

Tr(W
(i)
::kE

(i))

‖W(i)
::k‖2

)
, (20)

which completes the generalization of HALS to CNMF.
Indeed, when L = 1, the HALS update rule for NMF (eq.

13) can be recovered exactly. Specifically, when L = 1, both
E(i) and W

(i)
::k reduce to length-N vectors: E(i) is column t of

the residual matrix, and W
(i)
::k is the kth low rank factor. Thus,

the numerator term Tr(W
(i)
::kE

(i)) reduces to a vector inner
product. To update an entire row of H at once, as is standard
for HALS in NMF, the numerator term may be extended to
be a matrix-vector product, recovering eq. 13.

However, when L > 1, updating the full row of H in closed
form is not feasible. Specifically, the update rule for Hkt is
dependent on the current value of Hkτ for all t < τ < t +
L, meaning that one can only simultaneously update every



5

Lth entry in the kth row in H. Thus, there are two potential
extensions of HALS for CNMF, when updating H:
• Update H in blocks of size T/L. Iterate over ` =

1, . . . , L− 1 and, starting at position `, update every Lth

entry of row k in H. In principle, this could be achieved
by appropriately truncating and reshaping the residual
matrix E(i).

• Update single entries of H. Iterate over t = 1, . . . , T
and update Hkt by equation 20. Note that one need not
compute the full residual matrix; only columns ranging
from t to t+L of E(i) should be computed. This results in
O(NL) total floating point operations to update a single
entry of H.

In both cases, the relevant entries in E(i) should be updated
after each parameter update. The second option listed above
(pure coordinate descent) is simpler to implement, and thus
we focused on this variant in our numerical experiments [18].

As in HALS for NMF, adding `1 regularization with weight
α amounts to subtracting α from the numerator, and adding `2
regularization with weight β amounts to adding β to the de-
nominator [23]. These extensions to the above algorithm could
be used to identify regularized and sparse CNMF models. As
we are primarily interested in computational performance, we
did not explore the statistical benefits of such regularization
methods in detail.

B. ANLS

In this section, we derive an Alternating Nonnegative Least
Squares update rule for CNMF. We’ll make use of two
different formulations of the CNMF model, one for the update
of W and one for the update of H.

Updating W: If we fix all entries of the matrix H, updating
the tensor W using ANLS is straightforward. We recall the
formulation from (16), in which we expressed the CNMF
model as a product of block matrices: X̂ =

∼
W
∼
H. In this form,

it is clear that we can update the matrix
∼

W using an off-the-
shelf Nonnegative Least Squares solver. Since the matrix

∼
W

is simply a reshaped version of the tensor W , this suffices for
updating W . Concretely, we have the following update rule:

∼
W

(i+1)
= argmin

∼
W≥0

‖X−
∼

W
∼
H

(i)
‖2. (21)

Updating H: The update of H requires us to use a different
formulation of the CNMF model. First, we recall the following
fact (see, e.g., [26]):

vec(ABC) = (CT ⊗A) vec(B), (22)

for any matrices A,B,C (assuming appropriate dimensions).
This leads us to the following vectorized version of the CNMF
model:

vec(X̂) =

L∑
`=1

(ST
`−1 ⊗W`)︸ ︷︷ ︸

V

vec(H).

When W is fixed, the above equation allows us to update H
by solving a single Nonnegative Least Squares problem, as we

did in the case of W . With this definition, the ANLS update
rule for H is given by

H(i+1) = argmin
H≥0

‖ vec(X)−V vec(H)‖2. (23)

Thus, we have cast the CNMF optimization problem as an
Alternating Nonnegative Least Squares problem. In practice,
the matrix V ∈ RNT×KT+ may be too large to fit in memory.
One way around this is to use a matrix-free method, which
requires access to the matrix V only through it’s matrix vector
product. For example, Projected Gradient Descent and Fast
Iterative Shrinkage Thresholding (FISTA) are good candidate
methods if efficient implementations of Vz and VT z are
available [24], [25]. In practice, we find that directly solving
(23) at each iteration is inefficient. However, the formulation
above leads to two insights.

Noting that V is a block-toeplitz matrix, it becomes clear
that the update for H is actually a higher-dimensional analogue
to the standard nonnegative deconvolution problem studied in
the literature [27]. The difference is that here, the coefficient
matrix is block-toeplitz rather than toeplitz. This suggests the
possibility of leveraging the convolutional structure of the
problem using approaches which have been applied in the
deconvolution case. We leave this to future work.

The second insight is that updating a single column of H
with the other columns held fixed is simply a Nonnegative
Least Squares problem in K variables which does not require
explicitly storing the matrix V. Therefore, one approach to
solving (23) is block coordinate descent, updating a single
column at a time. Since block coordinate descent converges to
the optimal solution for Nonnegative Least Squares problems
[28], this approach would eventually reach the optimal solution
for (23). In practice, it is not necessary to exactly solve (23) at
each iteration. For the purposes of our numerical experiments,
we make a single pass of coordinate descent at each iteration
(updating each column exactly once), using the block-principal
pivoting method described in [29].

IV. NUMERICAL EXPERIMENTS

In this section, we compare all three algorithms on synthetic
and experimental data. We find that HALS and ANLS both
converge significantly faster than MU, and that their relative
performance to MU increases with dataset size. For example,
on a large audio dataset, we find that HALS converges roughly
five times faster than MU. This effect occurs consistently
regardless of random initialization.

In each figure, we measure reconstruction error (loss) by the
scaled norm of the residual, ‖X − X̂‖/‖X‖. All results are
obtained via the Julia [30] code using version 1.0, published in
the GitHub repository at github.com/degleris1/CMF.jl, which
contains implementations of all algorithms and Jupyter note-
books to reproduce figures. We use the Sherlock compute clus-
ter at Stanford to run all simulations, using two cores (Broad-
well) with 16GB of memory per core. In all experiments, all
algorithms were given the same random initialization.

github.com/degleris1/CMF.jl


6

0 20 40 60

0.1

0.2

0.3

0.4

L
os

s
T=500

0 25 50 75 100 125

0.1

0.2

0.3

T=2500

0 100 200 300 400

Time (seconds)

0.1

0.2

0.3

L
os

s

T=10000

0 200 400 600 800 1000

Time (seconds)

0.1

0.2

0.3

T=50000

Loss on synthetic datasets
HALS

MULT

ANLS

Fig. 2. Algorithm performance on synthetic data. The vertical axis denotes normalized loss of the CNMF model, ‖X − X̂‖/‖X‖; the horizontal axis
denotes cumulative computation time. As dataset size increases (denoted by number of timebins T ) the performance of HALS and ANLS improves relative to
multiplicative updates. For T = 500 and T = 2500 all three algorithms perform similarly. For T = 10000, multiplicative updates takes significantly longer
to converge. Finally, for T = 50000, multiplicative updates makes little to no progress in the allotted time (1000 seconds), whereas both ANLS and HALS
rapidly converge.

0 10 20 30 40 50 60

Time (seconds)

0.6

0.7

0.8

0.9

L
os

s

Relative Loss on Songbird Data

HALS

MULT

ANLS

Fig. 3. Algorithm performance on a songbird spectrogram from [10].
ANLS and HALS perform similarly and nearly converge after 20 seconds;
multiplicative updates takes approximately three times as long to achieve the
same objective value.

A. Synthetic Data

In this experiment, we test each algorithm on synthetic data
of various sizes. The synthetic datasets were generated from
a CNMF model with added noise, as follows:
• The dimensional parameters were chosen to be N = 250,
L = 20, K = 5. We generated and examined four

otherwise identical datasets with T = 500, T = 2500,
T = 10000, and T = 50000.

• Each w:nk (the length-L fibers of W) followed
a randomly shifted Gaussian curve. Specifically, let
f(τ ;µnk, σ) denote a univariate Gaussian probability
distribution function with mean µ and standard deviation
σ. We set σ = 0.2 and sampled µnk uniformly at random
between −1 and 1. We then randomly sampled ampli-
tude parameters from a symmetric Dirichlet distribution
αn ∼ Dir(0.1), achieving approximately sparse vectors
αn ∈ RK+ representing loadings across each component.
Finally, we set W`nk = αnkf(2`/L − 1;µnk, σ), for
` = 1, . . . , L. This procedure was repeated for each
feature n = 1, . . . , N and component k = 1, . . . ,K.

• Each element in H was set to zero with probability 0.1,
and otherwise randomly sampled from an exponential
distribution with a rate parameter λ = 1. Similar to
our construction of W , this produced a synthetic dataset
with sparse factors, in agreement with previously reported
results on real data (e.g. [10]).

• The ground truth matrix is given by Xtrue =∑L
`=1 W`HS`−1. We then added truncated Gaussian

noise, Xnt = max(0,Xtrue
nt + ent) where each ent was

drawn uniformly from a standard normal distribution
(zero-mean and unit standard deviation). The matrix X



7

0 1000 2000 3000 4000 5000 6000

Time (seconds)

0.050

0.075

0.100

0.125

0.150

0.175
L

os
s

Comparative Loss on Speech Dataset

HALS

MULT

ANLS

7 8 9 10 11 12

Time (seconds)

0

50

100

150

200

250

D
F

T
B

in

Section of Speech Dataset

Fig. 4. Comparison of algorithms on a large speech dataset. Left: Normalized loss, ‖X−X̂‖/‖X‖, achieved by each algorithm as a function of computation
time. Both HALS and ANLS converge significantly faster than multiplicative updates. Right: a small slice of the speech dataset, representative of the full
recording.

Fig. 5. The twenty components W::k recovered by multiplicative updates, HALS, and ANLS. The vertical axis spans frequency (DFT bin) and the horizontal
axis spans time. One rectangle surrounded by a colored border is a single W::k . The borders of each component are colored to match the previous loss plots.
For all three algorithms, the components are perceptually similar but appear in different orders. Specifically, each algorithm recovers harmonic stacks that
correspond to different sounds frequently spoken during the recording.

was given as input to all algorithms.
Convergence on synthetic data is shown in Figure 2. For

small dataset sizes, all three algorithms give similar perfor-
mance. As dataset size grows, however, HALS and ANLS
converge much more quickly than MU. This is best illustrated
when T = 50000 columns. On this large dataset, MU fails to
converge within the 1000 second limit.

B. Results on a Songbird Spectrogram

In this experiment, we fit the CNMF model on a song-
bird spectrogram from [10] (available at github.com/FeeLab/
seqNMF). The dimensions of the data matrix are 141 DFT bins
(rows) by 4440 timebins (columns), and we use a motif length
of L = 50 and K = 3 factors. The timebins are sampled at
200 Hz. We run each algorithm for 60 seconds and plot the
relative loss over time. We find that both HALS and ANLS
converge after around 20 seconds, whereas multiplicative
updates fails to converge within the 60 second time limit (Fig.

3). All algorithms find perceptually similar components (data
not shown).

C. Qualitative Results on a Large Speech Dataset

In this experiment, we fit the CNMF model on a large
dataset consisting of two males speaking as part of an inter-
view. Following the procedure in [31], we down-sample the
audio recording to 8KHz and compute a magnitude spectrum
using an FFT window of 512 samples, and an overlap of
384. This yields a data matrix of size 257 × 20149 which
we fit using K = 20 components and motif length of L = 12
time-steps. As a final preprocessing step, we log-transform
the spectrogram and add a constant (so that all entries are
nonnnegative).

We observe that HALS and ANLS converge to their final
loss roughly 5x faster than MU. A small section of the
magnitude spectrogram, along with a convergence comparison,
is shown in Figure 4.

github.com/FeeLab/seqNMF
github.com/FeeLab/seqNMF


8

A natural question is whether the components found by
HALS and ANLS are similar to those found by MU. We find
that this is indeed the case. Figure 5 shows that components
recovered by all three algorithms are perceptually similar,
each containing distinctive horizontal bands which correspond
to the harmonics found in human speech. The components
extracted in this experiment look similar to those found by
[31].

V. CONCLUSION

In this paper, we have shown how to extend two popular
algorithms for NMF, HALS and ANLS, to the Convolutive
NMF problem. Both algorithms offer faster convergence rates
than MU, with speedups of around 5x noted on a large
dataset, and were observed to recover qualitatively similar
motifs. In situations where the practitioner must perform a
parameter search over regularization strengths or the number
of motifs, this speedup is of practical value. Future research
could investigate improvements to the ANLS algorithm by
incorporating specialized nonnegative least squares solvers and
potentially exploiting the block Toeplitz structure of eq. 23.
To handle even larger datasets, randomized variants of the
CNMF algorithms described here could also be developed, in
analogy to recently proposed randomized variants of HALS in
NMF [14]. Overall, we expect these improvements to enable
convolutional factor modeling on a variety of high-dimensional
time series data with much longer durations than what has been
previously explored.

APPENDIX A
REFORMULATIONS OF THE CNMF OBJECTIVE

The classical form of the CNMF approximation is

f(W ,H) =

L∑
`=1

W`HS`−1 (24)

We define the convolution operator as

WT
::k ∗ hT

k =

T∑
τ=1

Hkτ [W
T
::k]τ (25)

where [WT
::k]τ =

[
0τ−1 WT

::k 0T+1−L−τ
]

and 0p is a N×
p matrix of zeros. This allows us to write the outer product
form of the CNMF approximation

f(W ,H) =

K∑
k=1

WT
::k ∗ hT

k (26)

Another useful formulation comes from considering Kro-
necker identities. Given three matrices A,X,B, we know

vec(AXB) = (BT ⊗A) vec(X) (27)

from [26]. This leads us to the Kronecker form of the CNMF
approximation, which is

vec(f(W ,H)) =

L∑
`=1

(ST
`−1 ⊗W`) vec(H) (28)

=

L∑
`=1

(S1−` ⊗W`) vec(H) (29)

We define the matrix V =
∑L
`=1 S1−` ⊗W`, which is also

written as

V =



W1 0 . . . 0
W2 W1 . . . 0

...
...

...
WL WL−1 . . . 0
0 WL . . . 0
...

...
...

0 0 W1


(30)

where 0 is a T ×T matrix of zeros. Thus the Kronecker form
is concisely written as vec(f(W ,H)) = V vec(H).

Alternatively, we can take the transpose of equation (24)
and apply (27) to write the Toeplitz form of the CNMF
approximation

vec(f(W ,H)T) =

L∑
l=1

(W` ⊗ S1−`) vec(HT) (31)

which is also written as

vec(f(W ,H)T) =

T (w:11) . . . T (w:1K)
...

. . .
...

T (w:N1) . . . T (w:NK)

 (32)

where T (v) ∈ RT×T is a Toeplitz matrix defined for any
vector v ∈ RL as

T (v) =



v1 0 . . . 0
v2 v1 0
...

...
...

vL vL−1 . . . 0
0 vL . . . 0
...

...
...

0 0 . . . v1


(33)

i.e. the `th diagonal below the main diagonal is equal to v`+1.

APPENDIX B
DERIVATIONS OF THE HALS UPDATE RULES

A. HALS for NMF

Consider the NMF objective, written as

minimize
w1,...,wk
h1,...,hk

∥∥∥∥∥X−
K∑
k=1

wkh
T
k

∥∥∥∥∥
2

subject to wk ≥ 0,hk ≥ 0 ∀k ∈ {1, 2, ...,K}

We will derive a closed-form update rule that updates a single
column wk or a single row hT

k . By the symmetry of the
problem, it suffices to derive this update rule for wk only. First
choose k and let E = X −

∑
p 6=kwph

T
p . Our minimization

problem is now

minimize
wk

∥∥E−wkh
T
k

∥∥2
subject to wk ≥ 0



REFERENCES 9

Applying the identity ‖X‖2 = Tr(XTX), we can rewrite
J(wk) =

∥∥E−wkh
T
k

∥∥2 as

J(wk) = Tr
(
ETE

)
+Tr(hkw

T
kwkh

T
k )− 2Tr(ETwkh

T
k )

= Tr
(
ETE

)
+Tr(hT

khkw
T
kwk)− 2Tr(hT

kE
Twk)

= ‖E‖2 + ‖hk‖2‖wk‖2 − 2hT
kE

Twk

Next, we write the Langrangian as

L(wk, λ) = Tr
(
ETE

)
+ ‖hk‖2‖wk‖2 − 2hT

kE
Twk − λTwk

which has gradient

∇wk
L(wk, λ) = 2‖hk‖2wk − 2Ehk − λ

Setting this equal to zero gives us the KKT conditions

wk =
Ehk +

1
2λ

‖hk‖2
(34)

λ ≥ 0 (35)
wk ≥ 0 (36)

(wk)iλi = 0 ∀i = 1, 2, . . . , N (37)

If (Ehk)i ≥ 0, then we must have λi = 0 to satisfy equation
(37). If (Ehk)i ≥ 0, then we must have (wk)i = 0. This leads
to the closed form solution

wk = max

(
0,

Ehk
‖hk‖2

)
(38)

B. HALS for CNMF

For the CNMF model, the HALS update rule loses its
symmetry across W and H. However, as demonstrated in
Section III-A, the update rule for W can be derived using
the HALS update rule for NMF. To derive the update rule
for H, we begin by choosing k, t and defining E = X −∑

(p,τ)6=(k,t) Hp,τ

[
WT

::p

]
τ
. From (18), we can update Hkt

with the optimization problem

minimize
Hkt

J(Hkt) =
∥∥E−Hkt[W

T
::k]t
∥∥2

subject to Hkt ≥ 0
(39)

Since [WT
::k]t only interacts with L columns of E, we can

define R = E:,t+L−1 and write (39) as

minimize
Hkt

J(Hkt) =
∥∥R−HktW

T
::k

∥∥2
subject to Hkt ≥ 0

(40)

Since Hkt is just a scalar, it is quite simple to derive a closed
form update rule. The corresponding Lagrangian is

L(Hkt, λ) = ‖R‖2 +H2
kt‖WT

::k‖2 (41)
− 2Hkt Tr(W::kR)− λHkt

which has gradient

∇Hkt
L(Hkt, λ) = 2Hkt‖WT

::k‖2 (42)
− 2Tr(W::kR)− λ

This gives us the KKT conditions

Hkt =
Tr(W::kR) + 1

2λ

‖WT
::k‖2

(43)

Hkt ≥ 0 (44)
λ ≥ 0 (45)

λHkt = 0 (46)

Equation (46), which is referred to as the complementary
slackness condition, implies that either λ or Hkt, must be
zero. This allows us to update Hkt using the closed form
update rule from Section III-A.

REFERENCES

[1] D. D. Lee and H. S. Seung, “Learning the parts of
objects by non-negative matrix factorization,” Nature,
vol. 401, p. 788, Oct. 1999. [Online]. Available: https:
//doi.org/10.1038/44565%20http://10.0.4.14/44565.

[2] N. Gillis, “The why and how of nonnegative matrix
factorization,” Regularization, Optimization, Kernels,
and Support Vector Machines, vol. 12, no. 257, 2014.

[3] P. Smaragdis and J. C. Brown, “Non-negative ma-
trix factorization for polyphonic music transcription,”
in 2003 IEEE Workshop on Applications of Sig-
nal Processing to Audio and Acoustics (IEEE Cat.
No.03TH8684), Oct. 2003, pp. 177–180.

[4] S. Jia and Y. Qian, “Constrained nonnegative matrix
factorization for hyperspectral unmixing,” IEEE Trans-
actions on Geoscience and Remote Sensing, vol. 47,
no. 1, pp. 161–173, Jan. 2009, ISSN: 0196-2892. DOI:
10.1109/TGRS.2008.2002882.

[5] J. K. Liu, H. M. Schreyer, A. Onken, F. Rozenblit,
M. H. Khani, V. Krishnamoorthy, S. Panzeri, and T.
Gollisch, “Inference of neuronal functional circuitry
with spike-triggered non-negative matrix factorization,”
Nature Communications, vol. 8, no. 1, p. 149, 2017,
ISSN: 2041-1723. DOI: 10.1038/s41467-017-00156-9.
[Online]. Available: https: / /doi .org/10.1038/s41467-
017-00156-9.

[6] R. H. R. Hahnloser, A. A. Kozhevnikov, and M. S.
Fee, “An ultra-sparse code underliesthe generation of
neural sequences in a songbird,” Nature, vol. 419, no.
6902, pp. 65–70, 2002, ISSN: 1476-4687. DOI: 10.1038/
nature00974. [Online]. Available: https : / /doi .org /10 .
1038/nature00974.

[7] S. Fujisawa, A. Amarasingham, M. T. Harrison, and
G. Buzsáki, “Behavior-dependent short-term assembly
dynamics in the medial prefrontal cortex,” Nature neu-
roscience, vol. 11, no. 7, p. 823, 2008.

[8] P. Smaragdis, “Non-negative matrix factor deconvolu-
tion; extraction of multiple sound sources from mono-
phonic inputs,” in Independent Component Analysis and
Blind Signal Separation, C. G. Puntonet and A. Prieto,
Eds., Berlin, Heidelberg: Springer Berlin Heidelberg,
2004, pp. 494–499, ISBN: 978-3-540-30110-3.

https://doi.org/10.1038/44565%20http://10.0.4.14/44565
https://doi.org/10.1038/44565%20http://10.0.4.14/44565
http://dx.doi.org/10.1109/TGRS.2008.2002882
http://dx.doi.org/10.1038/s41467-017-00156-9
https://doi.org/10.1038/s41467-017-00156-9
https://doi.org/10.1038/s41467-017-00156-9
http://dx.doi.org/10.1038/nature00974
http://dx.doi.org/10.1038/nature00974
https://doi.org/10.1038/nature00974
https://doi.org/10.1038/nature00974


10

[9] P. Smaragdis et al., “Convolutive speech bases and
their application to supervised speech separation,” IEEE
Transactions on audio speech and language processing,
vol. 15, no. 1, p. 1, 2007.

[10] E. L. Mackevicius, A. H. Bahle, A. H. Williams, S.
Gu, N. I. Denissenko, M. S. Goldman, and M. S.
Fee, “Unsupervised discovery of temporal sequences in
high-dimensional datasets, with applications to neuro-
science,” BioRxiv, 2018. DOI: 10.1101/273128. eprint:
https : / / www. biorxiv. org / content / early / 2018 / 03 / 02 /
273128 . full . pdf. [Online]. Available: https : / / www.
biorxiv.org/content/early/2018/03/02/273128.

[11] V. Ramanarayanan, A. Katsamanis, and S. Narayanan,
“Automatic data-driven learning of articulatory primi-
tives from real-time mri data using convolutive nmf with
sparseness constraints,” in Twelfth Annual Conference of
the International Speech Communication Association,
2011.

[12] J. Zhou, R. Liang, L. Zhao, L. Tao, and C. Zou, “Unsu-
pervised learning of phonemes of whispered speech in
a noisy environment based on convolutive non-negative
matrix factorization,” Information Sciences, vol. 257,
pp. 115–126, 2014.

[13] R. Kannan, G. Ballard, and H. Park, “A high-
performance parallel algorithm for nonnegative matrix
factorization,” SIGPLAN Not., vol. 51, no. 8, 9:1–9:11,
Feb. 2016, ISSN: 0362-1340. DOI: 10.1145/3016078.
2851152. [Online]. Available: http: / /doi .acm.org/10.
1145/3016078.2851152.

[14] N. B. Erichson, A. Mendible, S. Wihlborn, and J. N.
Kutz, “Randomized nonnegative matrix factorization,”
Pattern Recognition Letters, vol. 104, pp. 1–7, 2018,
ISSN: 0167-8655. DOI: https : / / doi . org / 10 . 1016 /
j . patrec . 2018 . 01 . 007. [Online]. Available: http :
/ / www . sciencedirect . com / science / article / pii /
S0167865518300138.

[15] B. Zupan et al., “Nimfa: A python library for nonnega-
tive matrix factorization,” Journal of Machine Learning
Research, vol. 13, no. 3, pp. 849–853, 2012.

[16] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay,
“Scikit-learn: Machine learning in Python,” Journal of
Machine Learning Research, vol. 12, pp. 2825–2830,
2011.

[17] D. D. Lee and H. S. Seung, “Algorithms for non-
negative matrix factorization,” in Advances in neural
information processing systems, 2001, pp. 556–562.

[18] J. Kim, Y. He, and H. Park, “Algorithms for nonnegative
matrix and tensor factorizations: A unified view based
on block coordinate descent framework,” Journal of
Global Optimization, vol. 58, no. 2, pp. 285–319, Feb.
2014, ISSN: 1573-2916. DOI: 10 . 1007 / s10898 - 013 -
0035- 4. [Online]. Available: https://doi.org/10.1007/
s10898-013-0035-4.

[19] S. J. Wright, “Coordinate descent algorithms,” Mathe-
matical Programming, vol. 151, no. 1, pp. 3–34, Jun.

2015, ISSN: 1436-4646. DOI: 10 . 1007 / s10107 - 015 -
0892- 3. [Online]. Available: https://doi.org/10.1007/
s10107-015-0892-3.

[20] S. Vavasis, “On the complexity of nonnegative matrix
factorization,” SIAM Journal on Optimization, vol. 20,
no. 3, pp. 1364–1377, 2010. DOI: 10.1137/070709967.

[21] D. Donoho and V. Stodden, “When does non-negative
matrix factorization give a correct decomposition into
parts?” In Advances in neural information processing
systems, 2004, pp. 1141–1148.

[22] S. Arora, R. Ge, R. Kannan, and A. Moitra, “Computing
a nonnegative matrix factorization—provably,” SIAM
Journal on Computing, vol. 45, no. 4, pp. 1582–1611,
2016. DOI: 10.1137/130913869.

[23] A. Cichocki, R. Zdunek, and S.-i. Amari, “Hierarchical
als algorithms for nonnegative matrix and 3d tensor fac-
torization,” in International Conference on Independent
Component Analysis and Signal Separation, Springer,
2007, pp. 169–176.

[24] C.-J. Lin, “Projected gradient methods for nonnegative
matrix factorization,” Neural computation, vol. 19, no.
10, pp. 2756–2779, 2007.

[25] R. A. Polyak, “Projected gradient method for non-
negative least square,” Contemp Math, vol. 636,
pp. 167–179, 2015.

[26] R. A. Horn and C. R. Johnson, Topics in matrix anal-
ysis. Cambridge University Press, 1991. DOI: 10.1017/
CBO9780511840371.

[27] J. T. Vogelstein, A. M. Packer, T. A. Machado, T. Sippy,
B. Babadi, R. Yuste, and L. Paninski, “Fast nonnegative
deconvolution for spike train inference from population
calcium imaging,” Journal of neurophysiology, vol. 104,
no. 6, pp. 3691–3704, 2010.

[28] A. Beck and L. Tetruashvili, “On the convergence of
block coordinate descent type methods,” SIAM journal
on Optimization, vol. 23, no. 4, pp. 2037–2060, 2013.

[29] J. Kim and H. Park, “Fast nonnegative matrix factor-
ization: An active-set-like method and comparisons,”
SIAM Journal on Scientific Computing, vol. 33, no. 6,
pp. 3261–3281, 2011.

[30] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah,
“Julia: A fresh approach to numerical computing,”
SIAM review, vol. 59, no. 1, pp. 65–98, 2017.

[31] P. D. O’grady and B. A. Pearlmutter, “Discovering
convolutive speech phones using sparseness and non-
negativity,” in International Conference on Independent
Component Analysis and Signal Separation, Springer,
2007, pp. 520–527.

http://dx.doi.org/10.1101/273128
https://www.biorxiv.org/content/early/2018/03/02/273128.full.pdf
https://www.biorxiv.org/content/early/2018/03/02/273128.full.pdf
https://www.biorxiv.org/content/early/2018/03/02/273128
https://www.biorxiv.org/content/early/2018/03/02/273128
http://dx.doi.org/10.1145/3016078.2851152
http://dx.doi.org/10.1145/3016078.2851152
http://doi.acm.org/10.1145/3016078.2851152
http://doi.acm.org/10.1145/3016078.2851152
http://dx.doi.org/https://doi.org/10.1016/j.patrec.2018.01.007
http://dx.doi.org/https://doi.org/10.1016/j.patrec.2018.01.007
http://www.sciencedirect.com/science/article/pii/S0167865518300138
http://www.sciencedirect.com/science/article/pii/S0167865518300138
http://www.sciencedirect.com/science/article/pii/S0167865518300138
http://dx.doi.org/10.1007/s10898-013-0035-4
http://dx.doi.org/10.1007/s10898-013-0035-4
https://doi.org/10.1007/s10898-013-0035-4
https://doi.org/10.1007/s10898-013-0035-4
http://dx.doi.org/10.1007/s10107-015-0892-3
http://dx.doi.org/10.1007/s10107-015-0892-3
https://doi.org/10.1007/s10107-015-0892-3
https://doi.org/10.1007/s10107-015-0892-3
http://dx.doi.org/10.1137/070709967
http://dx.doi.org/10.1137/130913869
http://dx.doi.org/10.1017/CBO9780511840371
http://dx.doi.org/10.1017/CBO9780511840371

	I Introduction
	II Background
	II-A Notation
	II-B The NMF and CNMF models
	II-C Multiplicative Update (MU) Algorithms
	II-D Hierarchical Alternating Least Squares (HALS) for NMF
	II-E Alternating Nonnegative Least Squares (ANLS) for NMF

	III New Algorithms for CNMF
	III-A HALS
	III-B ANLS

	IV Numerical Experiments
	IV-A Synthetic Data
	IV-B Results on a Songbird Spectrogram
	IV-C Qualitative Results on a Large Speech Dataset

	V Conclusion
	Appendix A: Reformulations of the CNMF objective
	Appendix B: Derivations of the HALS update rules
	B-A HALS for NMF
	B-B HALS for CNMF


